Shortcuts

Unflatten

class torch.nn.Unflatten(dim, unflattened_size)[source]

Unflattens a tensor dim expanding it to a desired shape. For use with Sequential.

  • dim specifies the dimension of the input tensor to be unflattened, and it can be either int or str when Tensor or NamedTensor is used, respectively.

  • unflattened_size is the new shape of the unflattened dimension of the tensor and it can be a tuple of ints or a list of ints or torch.Size for Tensor input; a NamedShape (tuple of (name, size) tuples) for NamedTensor input.

Shape:
  • Input: (N,dims)(N, *dims)

  • Output: (N,Cout,Hout,Wout)(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})

Parameters
  • dim (Union[int, str]) – Dimension to be unflattened

  • unflattened_size (Union[torch.Size, Tuple, List, NamedShape]) – New shape of the unflattened dimension

Examples

>>> input = torch.randn(2, 50)
>>> # With tuple of ints
>>> m = nn.Sequential(
>>>     nn.Linear(50, 50),
>>>     nn.Unflatten(1, (2, 5, 5))
>>> )
>>> output = m(input)
>>> output.size()
torch.Size([2, 2, 5, 5])
>>> # With torch.Size
>>> m = nn.Sequential(
>>>     nn.Linear(50, 50),
>>>     nn.Unflatten(1, torch.Size([2, 5, 5]))
>>> )
>>> output = m(input)
>>> output.size()
torch.Size([2, 2, 5, 5])
>>> # With namedshape (tuple of tuples)
>>> input = torch.randn(2, 50, names=('N', 'features'))
>>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5)))
>>> output = unflatten(input)
>>> output.size()
torch.Size([2, 2, 5, 5])
NamedShape

alias of typing.Tuple

add_module(name, module)

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters
  • name (string) – name of the child module. The child module can be accessed from this module using the given name

  • module (Module) – child module to be added to the module.

apply(fn)

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).

Parameters

fn (Module -> None) – function to be applied to each submodule

Returns

self

Return type

Module

Example:

>>> @torch.no_grad()
>>> def init_weights(m):
>>>     print(m)
>>>     if type(m) == nn.Linear:
>>>         m.weight.fill_(1.0)
>>>         print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

Returns

self

Return type

Module

buffers(recurse=True)

Returns an iterator over module buffers.

Parameters

recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields

torch.Tensor – module buffer

Example:

>>> for buf in model.buffers():
>>>     print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
children()

Returns an iterator over immediate children modules.

Yields

Module – a child module

cpu()

Moves all model parameters and buffers to the CPU.

Returns

self

Return type

Module

cuda(device=None)

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Parameters

device (int, optional) – if specified, all parameters will be copied to that device

Returns

self

Return type

Module

double()

Casts all floating point parameters and buffers to double datatype.

Returns

self

Return type

Module

eval()

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

This is equivalent with self.train(False).

Returns

self

Return type

Module

float()

Casts all floating point parameters and buffers to float datatype.

Returns

self

Return type

Module

half()

Casts all floating point parameters and buffers to half datatype.

Returns

self

Return type

Module

load_state_dict(state_dict, strict=True)

Copies parameters and buffers from state_dict into this module and its descendants. If strict is True, then the keys of state_dict must exactly match the keys returned by this module’s state_dict() function.

Parameters
  • state_dict (dict) – a dict containing parameters and persistent buffers.

  • strict (bool, optional) – whether to strictly enforce that the keys in state_dict match the keys returned by this module’s state_dict() function. Default: True

Returns

  • missing_keys is a list of str containing the missing keys

  • unexpected_keys is a list of str containing the unexpected keys

Return type

NamedTuple with missing_keys and unexpected_keys fields

modules()

Returns an iterator over all modules in the network.

Yields

Module – a module in the network

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
        print(idx, '->', m)

0 -> Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers(prefix='', recurse=True)

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters
  • prefix (str) – prefix to prepend to all buffer names.

  • recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

Yields

(string, torch.Tensor) – Tuple containing the name and buffer

Example:

>>> for name, buf in self.named_buffers():
>>>    if name in ['running_var']:
>>>        print(buf.size())
named_children()

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields

(string, Module) – Tuple containing a name and child module

Example:

>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)
named_modules(memo=None, prefix='')

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Yields

(string, Module) – Tuple of name and module

Note

Duplicate modules are returned only once. In the following example, l will be returned only once.

Example:

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
        print(idx, '->', m)

0 -> ('', Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
named_parameters(prefix='', recurse=True)

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters
  • prefix (str) – prefix to prepend to all parameter names.

  • recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields

(string, Parameter) – Tuple containing the name and parameter

Example:

>>> for name, param in self.named_parameters():
>>>    if name in ['bias']:
>>>        print(param.size())
parameters(recurse=True)

Returns an iterator over module parameters.

This is typically passed to an optimizer.

Parameters

recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

Yields

Parameter – module parameter

Example:

>>> for param in model.parameters():
>>>     print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
register_backward_hook(hook)

Registers a backward hook on the module.

This function is deprecated in favor of nn.Module.register_full_backward_hook() and the behavior of this function will change in future versions.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_buffer(name, tensor, persistent=True)

Adds a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s running_mean is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s state_dict.

Buffers can be accessed as attributes using given names.

Parameters
  • name (string) – name of the buffer. The buffer can be accessed from this module using the given name

  • tensor (Tensor) – buffer to be registered.

  • persistent (bool) – whether the buffer is part of this module’s state_dict.

Example:

>>> self.register_buffer('running_mean', torch.zeros(num_features))
register_forward_hook(hook)

Registers a forward hook on the module.

The hook will be called every time after forward() has computed an output. It should have the following signature:

hook(module, input, output) -> None or modified output

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

The hook will be called every time before forward() is invoked. It should have the following signature:

hook(module, input) -> None or modified input

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_full_backward_hook(hook)

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.

Warning

Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Returns

a handle that can be used to remove the added hook by calling handle.remove()

Return type

torch.utils.hooks.RemovableHandle

register_parameter(name, param)

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters
  • name (string) – name of the parameter. The parameter can be accessed from this module using the given name

  • param (Parameter) – parameter to be added to the module.

requires_grad_(requires_grad=True)

Change if autograd should record operations on parameters in this module.

This method sets the parameters’ requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

Parameters

requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: True.

Returns

self

Return type

Module

state_dict(destination=None, prefix='', keep_vars=False)

Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names.

Returns

a dictionary containing a whole state of the module

Return type

dict

Example:

>>> module.state_dict().keys()
['bias', 'weight']
to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)
to(dtype, non_blocking=False)
to(tensor, non_blocking=False)
to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtype`s. In addition, this method will only cast the floating point or complex parameters and buffers to :attr:`dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Parameters
  • device (torch.device) – the desired device of the parameters and buffers in this module

  • dtype (torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module

  • tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

  • memory_format (torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)

Returns

self

Return type

Module

Examples:

>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
train(mode=True)

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

Parameters

mode (bool) – whether to set training mode (True) or evaluation mode (False). Default: True.

Returns

self

Return type

Module

type(dst_type)

Casts all parameters and buffers to dst_type.

Parameters

dst_type (type or string) – the desired type

Returns

self

Return type

Module

xpu(device=None)

Moves all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

Parameters

device (int, optional) – if specified, all parameters will be copied to that device

Returns

self

Return type

Module

zero_grad(set_to_none=False)

Sets gradients of all model parameters to zero. See similar function under torch.optim.Optimizer for more context.

Parameters

set_to_none (bool) – instead of setting to zero, set the grads to None. See torch.optim.Optimizer.zero_grad() for details.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources